

(AUTONOMOUS)

B.Tech II Year II Semester Regular Examinations October-2020 FORMAL LANGUAGES AND AUTOMATA THEORY

(Common to CSE & CSIT)

Time: 3 hours

PART-A

Max. Marks: 60

2M

2M

2M

- (Answer all the Questions $5 \times 2 = 10$ Marks)
- a Differentiate NFA and DFA. 1
 - **b** Construct a r.e for the language which accepts all strings with at least two c's over **2M** the set $\Sigma = \{c, b\}$. **2M**
 - **c** What is a ambiguous grammar?
 - d Define Deterministic PDA.
 - e When we say a problem is decidable? Give an example of undecidable problem.

PART-B

(Answer all Five Units $5 \times 10 = 50$ Marks)

UNIT-I

a Define Moore machine. Construct Mealy machine corresponding to Moore machine. **5**M 2

States	Next States		Output	
(Q)	I/P=0	I/P=1	Output	
→q1	q1	q2	0	
q2	q1	q3	0	
q3	q1	q3	1	

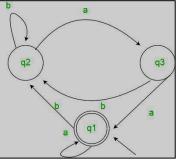
b Write a procedure for conversion of NFA to DFA.

OR

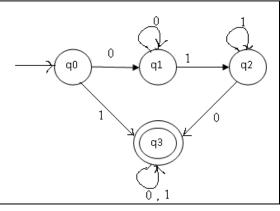
5M

5M

5M


- 3 **a** Define relations on set and explain its property with an example.
 - **b** Define NFA and DFA. Construct DFA for the given NFA.

	Nex	Next state		
	0	1		
$\rightarrow q_0$	q0,q1	q 0		
q 1	q2	q1		
q2	q3	q3		
q3	-	q 2		


UNIT-II

- 4 a Construct an equivalent FA for the given regular expression (0+1)*(00+11)(0+1)* 5M
 - **b** State Arden's theorem and construct the regular expression for the following FA using **5M** Arden's theorem.

OR

- **5 a** Prove R=Q+RP has unique solution, R=QP*
 - **b** Explain about the Arden' theorem, Construct RE for given FA

UNIT-III

6	a	a Write the procedure for Convert the grammar into CNF.		
	b	b Convert the following grammar into CNF.		
		$S \rightarrow bA/aB$ $A \rightarrow bAA/aS/a$ $B \rightarrow aBB/bS/a$.		
		OR		
7	a	What is linear grammar? Explain in detail with example.	5M	
	b Explain the closure properties of context free languages.			
		UNIT-IV		
8	0	Construct a PDA, which recognizes all strings that contain equal number of 0's & 1's.	6M	
0				
	D	A PDA is more powerful than a finite automaton. Justify this statement.	4 M	
		OR		
9	a	Construct an equivalent PDA for the following CFG:	7 M	
		S→aAB bBA		
		A→bS a		
		$B \rightarrow aS \mid b$		
	b	Explain the formal definition of PDA.	3M	
		UNIT-V		
10		Explain conversion of regular Expression to TM with example.	10M	
		OR		
11	9	Explain Universal Turing machine	7M	
11				
	b	Describe Turing reducibility.	3 M	

END

5M 5M